Formula Inti ACO
Visibilitas
$$ \eta_{ij} = \frac{1}{d_{ij}} $$
Probabilitas Pilihan
$$ p^k_{ij}(t) = \frac{[\tau_{ij}(t)]^\alpha \cdot [\eta_{ij}]^\beta}{\sum_{l \in N^k_i} [\tau_{il}(t)]^\alpha \cdot [\eta_{il}]^\beta} $$
Deposit Feromon
$$ \Delta\tau^k_{ij} = \begin{cases} \frac{Q}{L_k} & \text{jika } (i,j) \in \text{Jalur}_k \\ 0 & \text{lainnya} \end{cases} $$
Update Feromon
$$ \tau_{ij}(t+1) = (1-\rho) \cdot \tau_{ij}(t) + \sum_{k=1}^{m} \Delta\tau^k_{ij} $$